73 research outputs found

    Factoring and Fourier Transformation with a Mach-Zehnder Interferometer

    Full text link
    The scheme of Clauser and Dowling (Phys. Rev. A 53, 4587 (1996)) for factoring NN by means of an N-slit interference experiment is translated into an experiment with a single Mach-Zehnder interferometer. With dispersive phase shifters the ratio of the coherence length to wavelength limits the numbers that can be factored. A conservative estimate permits N107N \approx 10^7. It is furthermore shown, that sine and cosine Fourier coefficients of a real periodic function can be obtained with such an interferometer.Comment: 5 pages, 2 postscript figures; to appear in Phys.Rev.A, Nov. 1997; Figures contained only in replaced versio

    A Quantum-mechanical description of ion motion within the confining potentials of voltage gated ion channels

    Full text link
    Voltage gated channel proteins cooperate in the transmission of membrane potentials between nerve cells. With the recent progress in atomic-scaled biological chemistry it has now become established that these channel proteins provide highly correlated atomic environments that may maintain electronic coherences even at warm temperatures. Here we demonstrate solutions of the Schr\"{o}dinger equation that represent the interaction of a single potassium ion within the surrounding carbonyl dipoles in the Berneche-Roux model of the bacterial \textit{KcsA} model channel. We show that, depending on the surrounding carbonyl derived potentials, alkali ions can become highly delocalized in the filter region of proteins at warm temperatures. We provide estimations about the temporal evolution of the kinetic energy of ions depending on their interaction with other ions, their location within the oxygen cage of the proteins filter region and depending on different oscillation frequencies of the surrounding carbonyl groups. Our results provide the first evidence that quantum mechanical properties are needed to explain a fundamental biological property such as ion-selectivity in trans-membrane ion-currents and the effect on gating kinetics and shaping of classical conductances in electrically excitable cells.Comment: 12 pages, 8 figure

    Dissipative systems: uncontrollability, observability and RLC realizability

    Full text link
    The theory of dissipativity has been primarily developed for controllable systems/behaviors. For various reasons, in the context of uncontrollable systems/behaviors, a more appropriate definition of dissipativity is in terms of the dissipation inequality, namely the {\em existence} of a storage function. A storage function is a function such that along every system trajectory, the rate of increase of the storage function is at most the power supplied. While the power supplied is always expressed in terms of only the external variables, whether or not the storage function should be allowed to depend on unobservable/hidden variables also has various consequences on the notion of dissipativity: this paper thoroughly investigates the key aspects of both cases, and also proposes another intuitive definition of dissipativity. We first assume that the storage function can be expressed in terms of the external variables and their derivatives only and prove our first main result that, assuming the uncontrollable poles are unmixed, i.e. no pair of uncontrollable poles add to zero, and assuming a strictness of dissipativity at the infinity frequency, the dissipativities of a system and its controllable part are equivalent. We also show that the storage function in this case is a static state function. We then investigate the utility of unobservable/hidden variables in the definition of storage function: we prove that lossless autonomous behaviors require storage function to be unobservable from external variables. We next propose another intuitive definition: a behavior is called dissipative if it can be embedded in a controllable dissipative {\em super-behavior}. We show that this definition imposes a constraint on the number of inputs and thus explains unintuitive examples from the literature in the context of lossless/orthogonal behaviors.Comment: 26 pages, one figure. Partial results appeared in an IFAC conference (World Congress, Milan, Italy, 2011

    Quantum tomography as normalization of incompatible observations

    Full text link
    Quantum states are successfully reconstructed using the maximum likelihood estimation on the subspace where the measured projectors reproduce the identity operator. Reconstruction corresponds to normalization of incompatible observations. The proposed approach handles the noisy data corresponding to realistic incomplete observation with finite resolution.Comment: RevTeX, 4 pages, 3 figure

    New intensity and visibility aspects of a double loop neutron interferometer

    Full text link
    Various phase shifters and absorbers can be put into the arms of a double loop neutron interferometer. The mean intensity levels of the forward and diffracted beams behind an empty four plate interferometer of this type have been calculated. It is shown that the intensities in the forward and diffracted direction can be made equal using certain absorbers. In this case the interferometer can be regarded as a 50/50 beam splitter. Furthermore the visibilities of single and double loop interferometers are compared to each other by varying the transmission in the first loop using different absorbers. It can be shown that the visibility becomes exactly 1 using a phase shifter in the second loop. In this case the phase shifter in the second loop must be strongly correlated to the transmission coefficient of the absorber in the first loop. Using such a device homodyne-like measurements of very weak signals should become possible.Comment: 12 pages, 9 figures, accepted for publication in the Journal of Optics B - Quantum and Semiclassical Optic

    Zero-field and Larmor spinor precessions in a neutron polarimeter experiment

    Full text link
    We present a neutron polarimetric experiment where two kinds of spinor precessions are observed: one is induced by different total energy of neutrons (zero-field precession) and the other is induced by a stationary guide field (Larmor precession). A characteristic of the former is the dependence of the energy-difference, which is in practice tuned by the frequency of the interacting oscillating magnetic field. In contrast the latter completely depends on the strength of the guide field, namely Larmor frequency. Our neutron-polarimetric experiment exhibits individual tuning as well as specific properties of each spinor precession, which assures the use of both spin precessions for multi-entangled spinor manipulation.Comment: 12 pages, 4 figure

    Interrelations Between the Neutron's Magnetic Interactions and the Magnetic Aharonov-Bohm Effect

    Get PDF
    It is proved that the phase shift of a polarized neutron interacting with a spatially uniform time-dependent magnetic field, demonstrates the same physical principles as the magnetic Aharonov-Bohm effect. The crucial role of inert objects is explained, thereby proving the quantum mechanical nature of the effect. It is also proved that the nonsimply connectedness of the field-free region is not a profound property of the system and that it cannot be regarded as a sufficient condition for a nonzero phase shift.Comment: 18 pages, 1 postscript figure, Late

    Quantum theory of incompatible observations

    Get PDF
    Maximum likelihood principle is shown to be the best measure for relating the experimental data with the predictions of quantum theory.Comment: 3 page
    corecore